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The dependence of the shape and stability of rigidly rotating captive drops on multiple
parameters is analysed by applying asymptotic and computer-aided techniques from
bifurcation theory to the Young-Laplace equation which governs meniscus shape. In
accordance with Brown and Scriven, equilibrium shapes for drops with the volume of
a cylinder and without gravity are grouped into families of like symmetry that branch
from the cylindrical shape at specific values of rotation rate, measured by the rotational
Bond number 2. Here, the evolution of these families with changes in drop volume ¥,
drop length B, and gravitational Bond number G is presented. Criteria are laid out for
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348 L.H UNGAR AND R. A.BROWN

predicting drop stability from the evolution of shape families in this parameter-space
and they circumvent much of the extensive solution of eigenproblems used previously.

Asymptotic analysis describes drops slightly different from the cylindrical ones and
shows that some shape bifurcations from cylinders to wavy, axisymmetric menisci are
ruptured by small changes in drop volume or gravity. Near these points at least one of
the shape families singularly develops a fold or limit point.

Numerical methods couple finite-element representation of drop shape which is valid
for a wide range of parameters with computer-implemented techniques for tracking
shape families. An algorithm is presented that calculates, in two parameters, the loci of
bifurcation or limit points; this is used to map drop stability for the four-dimensional
parameter space (X, #”, B, G). The numerical and asymptotic results compare well in
the small region of parameters where the latter are valid. An exchange of axisymmetric
mode for instability is predicted numerically for drop volumes much smaller than that
of a cylinder.

1. INTRODUCTION

The calculation of the shape and stability of interfaces that separate immiscible and static fluids
presents problems that have long fascinated researchers. Problems in capillary statics have simple
mathematical statements and the results have wide application. The shapes of such menisci are
governed by the nonlinear Young-Laplace equation or, alternatively, are given as extrema of
the potential energy function that describes the body forces shaping the interface. The solution
of the Young-Laplace equation is difficult and, usually, requires computer-aided calculation.
The organization of equilibrium menisci can also be complex; multiple or no equilibrium shapes
have been found in an increasing number of capillary problems. The occurrences of shape
multiplicity or loss of equilibrium are intimately connected with the stability of the interface.

Interfacial stability is controlled by the response of the potential energy to changes in the
shape of the meniscus and, for small-amplitude shape disturbances, is governed mathematically
by a linear eigenproblem. Traditional studies of interfacial stability (Gillete & Dyson 1971;
Pitts 1973, 1976) are founded on analysis of this eigenproblem. Others use the equivalence
between the mathematical questions of neutral stability with respect to a certain shape pertur-
bation and of bifurcation to a new shape family that, at lowest-order, resembles the same pertur-
bation superimposed on the original shape.

Ideas and analyses from the field of bifurcation theory have been applied with success to
interfacial problems controlled by asingle parameter (Pimbley 1976 ; Majumdar & Michael 1976;
Brown & Scriven 1980a—c; Benner et al. 1980). In several problems, menisci have been grouped
into families based on interfacial symmetry, and the connectivity and evolution of these families
have been studied as the parameter, say 2, was varied. The joining of two shape families and the
loss of one were explained by the occurrence of bifurcation points and limit points, respectively,
as 2 changed. These two possibilities are common in bifurcation analysis (Thompson & Hunt
1973) and are sketched in figure 1 with e representing a measure of interface shape.

Varying a second parameter in a meniscus problem may alter dramatically the connectivity
of the equilibrium families and change the stability characteristics of the meniscus. Varia-
tions of second parameters rupture certain bifurcation points, causing imperfect or perturbed
bifurcation (Keener & Keller 1973 ; Thompson & Hunt1973; Reiss 1977). In this paper we extend
the asymptotic and numerical techniques developed in Brown & Scriven (198oa; hereafter
referred to as I) to analyse the dependence of meniscus shape on multiple parameters. The
asymptotic methods are based on the perturbation procedures described in Matkowsky & Reiss
(1977) and Tooss & Joseph (1980) and are designed to account for the splitting of a bifurcation
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ROTATING DROPS: SHAPE AND STABILITY 349

point as a second parameter is varied. Our numerical methods, like those in I, combine finite-
element representation of drop shape with computer-implemented techniques for tracking shape
families. Here, more efficient methods are used for tracking families through bifurcation and
limit points. Another algorithm calculates directly sets of singular points—either bifurcation or
limit points ~in two parameters and makes possible calculation of the limits of shape stability in
many parameters. Although the techniques of bifurcation analysis used here apply to non-
conservative systems, the conservative framework of static meniscus problems allows, in many
cases, for the stability of the menisci to be inferred directly from the connectivity of the shape
families, obviating many of the eigenvalue calculations performed in I.

z z

FiGURE 1. Shape family representations of (a) bifurcation and (b) limit points. Here X is a parameter and € is a
measure of the distortion of the meniscus. Stable shapes are shown by a solid curve; unstable shapes by a
dashed curve.

The multiple cquilibriurh menisci of several capillary problems have been characterized by the
volume of fluid enclosed by the interface. Translationally symmetric pendent drops (Majumdar &
Michael 1976) and neutrally buoyant liquid fillets (Brown & Scriven 198o¢) of fixed volume both
lose stability at the liquid volume where a family of three-dimensional sinuous shapes joins the
two-dimensional forms. Most axisymmetric pendent drops (Michael & Williams 1976; Michael
1981) and liquid drops hanging from inclined tubes (Lawal & Brown 1982 a) lose stability atlimit
points in terms of drop volume.

The shape and stability of rigidly rotating free drops depend entirely on a single parameter, the
rotational Bond number X, that measures the strength of the centrifugal pressure field relative
to surface tension. Brown & Scriven (19804) mapped out the equilibriumformsof suchadrop by
computer-aided techniques like those in I. Shape and stability were determined by solving the
eigenvalue problem for each equilibrium form.

The equilibrium shapes and stability of a drop held captive between co-rotating solid faces
are governed by four parameters: the distance between the solid faces, the dimensionless drop
volume (¥7), the rotational Bond number 2, and the gravitational Bond number G, which
measures the relative importance of gravity and surface tension in setting drop shape. In I, the
shapes and stability of captive drops were calculated for ranges of 2 and ¥”, but without gravity.
In this limit, a cylindrical drop (a special value of ¥”) that attaches to the solid form is an
equilibrium shape for all rotational Bond numbers. New families of either axisymmetric or non-
axisymmetric drop shapes branch from the cylindrical ones at specific values of 2. Numerical
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350 L. H UNGAR AND R.A.BROWN

calculations in I show that changing the volume of the drop breaks the cylindrical drop family;
equilibrium drop shapes were not calculated for rotation rates above a maximum value of X,
where a limit point appeared in the shape family.

We focus our analysis on the captive rotating drop; the appropriate form of the Young-
Laplace equation is given in § 2. Asymptotic analysis outlined in § 3 shows the rupturing of the
family of cylindrical drops at bifurcation points to axisymmetric shape families as the drop volume
¥” is changed. The addition of gravity also splits the cylindrical drop family but at the branch
points to different families of axisymmetric shapes. We relate this result to calculations of Coriell
et al. (1977) for non-rotating liquid zones influenced by gravity.

A

2 5 1

nNo
oo
‘[ﬂl

%

-
2

Ficure 2. A rotating captive drop of volume ¥ with its dimensions.

The numerical algorithms for tracking shape families and singular points are given in § 4, and
the arguments for obtaining shape stability from plots of family connectivity are discussed in § 5.
The asymptotic and numerical calculations for nearly cylindrical drops are compared in §6,
and the ranges of validity of the perturbation results are established. Numerical calculations are
presented for the evolution of axisymmetric shape families over ranges of the four parameters and,
in several limits, are compared with previous stability analyses.

2. EQUILIBRIUM DROP SHAPES

We consider a drop of volume ¥ in a gap of length 25 between two coaxial solid faces of
radius R, both of which are rotating at angular velocity 2. The liquid wets the two faces, and the
meniscus is assumed to pin at circular contact lines of radius R. The surrounding fluid exerts only
a uniform pressure on the captive drop.

The shape of the drop is represented in cylindrical coordinates as 7 = F(z,0); see figure 2. The
Young-Laplace equation for meniscus shape is derived in I, the effects of gravity being neglected.
This derivation is easily repeated with the inclusion of a potential that increases with Z and yields
the dimensionless equation

424+ 2K+ Gz =

oS ufos +f L HS2HS3/2) = (L2 +S8) fo— (L +SE) S0 (2.1)
N EL :

where f = f(z,0) /R and z = Z/R are dimensionless variables, 2’ = R30?Ap /80 is the rotational

Bond number, K = RAp,/20 is the dimensionless reference pressure, and G = R?gAp/o is the
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ROTATING DROPS: SHAPE AND STABILITY 351

gravitational Bond number. The subscripts z and 6 denote partial differentiation, i.e. f, = 0f/00.
In these definitions o is the surface tension, Ap is the density difference between the drop and the
surroundings, g is the acceleration due to gravity, and Ap, is the datum pressure difference, being
that which would occur if the meniscus reached the axis of rotation.

The wetting conditions at the edges of the circular faces are, in dimensionless form,

f(—Bie) =f(B>0)=1> Osegﬂ: (2.2)

where B = B/R. Asin I, we assume the drop shape has a plane of reflective symmetry that passes
through the axis of rotation and through ¢ = 0; then

S9(2,0) = fy(z,m) =0, —B<z<B. (2.3)
The reference pressure difference K is determined from the constraint that the meniscus
encloses a fixed dimensionless volume ¥~ = ¥/ &3 for half of the drop:

v =%f:f:f2dzd0. (2.4)

3. PERTURBATIONS ABOUT A CYLINDRICAL DROP

In the absence of gravity a perfectly cylindrical drop is an equilibrium form for all rotation
rates. The corresponding solution to (2.1)—(2.4) is

f(O,Z) =1, K=%_22, (3.1)

for G = 0, ¥" = 1B, and all values of 2. Brown & Scriven (I) have exploited this result to study
the shape and stability of these cylinders as X' changes, but with ¥” and G held fixed.

The asymptotic analysis in I and the studies of variation of ¥” and G presented in this paper are
both embedded in two-variable expansions of the unknowns (f(z,0),K) and parameters
(&, G,¥") in terms of an amplitude parameter ¢ and a scaling parameter 8:

f(2,0; ¢,9) bAS
K(e, o) o o gugm| KO
Z(e, 8) 22 = . (3.2)
G(e, o) n=om=0mtml| o
¥ (e, 8) ¥

In these expansions, ¢ measures the amplitude of the difference between the known shapes in a
family of cylindrical drops and those in a bifurcating family; the parameter & scales the variation
of a particular shape family with the changing of either G or ¥~ and will be identified as one of
these parameters to a power. For brevity, the solution of the (r, m)th-order problem is denoted
as o = (f(z, 0), K®M). .

The first term in each expansion always corresponds to the cylindrical shape (f{® = 1, K{®
=}-20, G = 0,7(® = nB) and is valid for all values of Z{® and B. Substituting (3.2) into
equations (2.1)—(2.4) yields non-homogeneous linear partial differential equations of the form

(V2+2) () £ o
E[f f ()dzdo 0] {KW] d> (G, () (3.3)

where y2 = 1+ 8XZ(%, V2 = 0%/0z% +0%/060?, and d{ is the vector calculated at each order from
the non-homogeneous terms in (2.1) and lower-order terms in the expansion (3.2).
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For analysis of bifurcation points the three vectors d{V, d{®, d® are needed:

[ G \
apep,re) =787
(38— 7?%) f{2 — [ 4 B2 — 16O £ + 4f D f3) — G2
ap(GE, V) = L[
> —-= SfPrdzdo+ v ’
| 2J0l)-8
<:;qu/';j] — 24(ZO D+ TP 4 ZOF02) 4 3(3 — y2) fO £ (3.4)
_J ~ — 3D FD + 3D fb2 4 9FDR £D)
< doco®. vo = | T3/ <1>f(§3> + S + SRS — 62 )
>E (G, V' ®) = +B( RSB+ fRSE + 2f D [ D) — f{13)
2 o +9FIR £A) — 9F0 fB2 _ G®)
— | Vé3)
= O
O The boundary conditions (2.2), (2.8) reduce at each order to
=w
(- B,0) =f5(B,0) =0, 0<0<m, } (3.5)
[i$(z,0) =f§(z,m) =0, -B<z<B. )

PHILOSOPHICAL
TRANSACTIONS
OF

where T = (g,(2,0), k) and p

n (+B .
Gt = [ 020 6200 dzd0 12k,

The homogeneous version of equations (3.3)—(83.5) is symmetric in the inner product defined as

(3.6)

= (g5(2,0), k). At values of B and Z{® where the homogeneous

problem has a non-trivial solution{T = (¢(z,0), ¢), known as a null vector, the non-homogeneous
equation set (3.3)—(3.5) at (,)th order has a bounded solution only when the solvability criterion

<C, d§i)> =0

(3.7)

TABLE 1. ASYMPTOTIC RESULTS FOR BIFURCATION FOR THE FAMILY OF CYLINDRICAL

shape families
“ymmetric (ax.)
1) reflectively
symmetric (r.s.)

p
,'/\\ \\
/

=

P

@) F=ii) reflectively

e K< antisymmetric (r.a.)
—

E Uaxisymmetric (n.ax.)

= gi) reflectively

symmetric (r.s.)

ii) reflectively
antisymmetric (r.a.)

PHILOSOPHICAL
TRANSACTIONS
OF

ROTATING DROPs; G = 0 AND ¥~ = B

bifurcation points

Zhn = Yo, /B~

A cota, =1, (3.8)

n= 1, 2, ven J

Z0 = Yind/B -

i } (3.10)

2 = B 1)

n=2, 4, 6, (3.12)

k=12, .. J

232) = Len’n? / B+ 32— %‘l
=1,3, 5, (3.14)

k =12 .. J

a1
Ons

— (Bsinta)-} [cos (¢tys 2/B) —cos (Ot,m)] (3.9)

() -
Vs =

(1)

Vonks =

(1)

Vonka =

eigenfunctions

&, sin (a,,,) [2B?
_3 [sin (nz/B)
= (nB)-} [ 0 ]

e)]

_ ( 2 ) [sm (nmz/2B) cos (k6)

0
0)]

0

_) [cos (nrz/2B) cos (k0O)

(3.11)

(3.13)

(3.15)
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ROTATING DROPS: SHAPE AND STABILITY 353

is satisfied (Friedman 1956). These conditions are central to both the asymptotic analysis of
bifurcation and to the numerical schemes for tracking singular points.

When the expansions in the scaling parameter ¢ are neglected, and G and ¥” are fixed at their
values for the cylindrical shape family, our analysis of equations (3.3)—(3.5) reduces to the work
presented in I, and the solvability conditions (3.7) determine how the bifurcating shape families
evolve in X near the bifurcation point; i.e. they are used to determine the constants {Z{?}. We
refer to this case as unperturbed bifurcation. To calculate the changes in the cylindrical shapes
brought on by varying G (or ¥”) the expansions in the amplitude parameter € are neglected and
the solvability conditions are used to determine the relation between the variation in G (or ¥")
and the scaling parameter 6. Matkowsky & Reiss (1977) called the case when § and G (or ¥7) are
related nonlinearly a singular perturbation of the unperturbed bifurcation.

Corrected results of the analysis of the unperturbed bifurcation from I are summarized in
§ 3.1. The calculations of the effects of varying G and ¥ follow in § 3.2 and 3.3.

3.1. Unperturbed bifurcation: the cylindrical drop

When the expansions for G and ¥ are neglected the vector d§(0, 0) is zero and equations
(3.3)—(8.5) reduce to a linear eigenproblem for eigenvalues {Z{%} and eigenvectors "
= (f¥(z,0), K{). The values of {Z{%} give the locations of bifurcation points between the
family of cylindrical drops and new families of shapes with less symmetry. These points were
classified in I according to the symmetry of f§!)(z, 0) and are summarized in table 1 by equations
(3.8)-(3.15). The eigenvectors have been normalized by using the amplitude defined as

€ = {v—ovf), o). (3.16)

Axisymmetric drops occur in two sets of families which differ in shape symmetry with respect to
reflexions about the plane perpendicular to the axis of rotation at z = 0. One set has shapes that
are reflectively symmetric (r.s.); the other has shapes that are reflectively anti-symmetric (r.a.).
The other two sets of shape families are made up of non-axisymmetric (n.ax.) equilibrium forms
again differing by their symmetry with respect to the midplane of the drop. As shown below, the
symmetry of the equilibrium shapes in a family dictates how the family evolves with changes in
parameters: different shape families show qualitatively different behaviour when either G or #” is
changed.

The evolution of the various shape families in the ¢, Z-plane is determined by calculating the
constants (X, 2, ...). For the axisymmetric shape families the first terms are
—1 [4(3 —7%

type ax.—r.s.: Z{k = 48y B(nB)% [sin? (yB)

+3+y2], (3.17)

type ax.-r.a.: 2, = 0, (3.18)

where equation (3.17) is the corrected result of equation (4.12) in I. Projected in the ¢, Z-plane
the ax.—r.s. family cuts the cylindrical family at an angle that depends on the dimensionless
length of the drop. At 2B ~ 4.07 the projections of the two familics are exactly perpendicular and,
at higher values of B, the angle changes sign. This evolution with B of the ax.—r.s. family at the
bifurcation point is explained by a limit point in the r.s. family ncar the bifurcation point. As B is
increased the limit point shifts closer to the branch point and at 2B = 4.07 is coincident with it.
At higher values of B the limit point is on the opposite side of the bifurcation point. This sequence
is demonstrated by numerical calculations shown in figure 5.
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354 L.H UNGAR AND R.A.BROWN

The direction of bifurcation in the ¢, Z-plane for the ax.—r.a. families is dictated by the quadratic

coefficient Z{2,,
T, = — (1/32nB) [18 + 8y + 3y1], (3.19)

which is always negative. Analysis of the bifurcating families of non-axisymmetric shapes has
not been carried out to second order in ¢; however, numerical results presented in I indicate that
the first two shape-families bifurcate subcritically (X = 0, X{® < 0) when the drop has the
volume of a cylinder. '
3.2. Perturbed bifurcation: changes in volume and gravity

The variation of the cylindrical shapes with changes in G or #” is calculated by expanding
f(z,0) and K in terms of one of these parameters about (3.1). Formally, this is accomplished by
identifying ¢in (3.2) with either A¥” = (¥ —nB) or G and by neglecting the expansion for G(A¥")
and 2. The variations in drop shape and reference pressure due to a small value of G are

2

__ —1 [Bsin(yz)—zsin(yB)
~ y%sin (yB) [ 0 ] (3.20)

with y? = 14 82" A small change in ¥ gives the correction

¥

= —1 cos (yz) — cos (yB)
= gnB[COS (’)/B) —sin (‘)/B)/')/B] [ 1v2cos (')'B) ] (3.21)

The shape corrections (3.20), (3.21) for changes in G and ¥~ become infinite near the r.a. and
r.s. bifurcation points, respectively. Near these points the regular expansion that results from
scaling & proportional to either G or A¥” is unreasonable. The singular behaviour of the shape
families at these points is qualitatively clear by analogy with other work (Keener & Keller1973;
Reiss 19777); as G or ¥ is varied, the bifurcation point splits into separate curves and alimit point
is created.

To develop expansions valid near the axisymmetric bifurcation points we start from (3.2) with
n = 0 and use the solvability criteria (8.7) to calculate what terms in the expansions for G'or #” in
terms of & must be zero so that the solutions are bounded. This approach yields the same result
as the inner expansion in the singular perturbation technique of Matkowsky & Reiss (1977), as
well as the appropriate scaling between the parameter (G or ¥”) and 8. In the next two sub-
sections the results are presented for changes in ¥ near the ax.~r.s. bifurcation point and in G
near the ax.-r.a. bifurcation point. There is no need for rescaling the parameters near the non-
axisymmetric bifurcation points (3.12), (3.14) since the corrections to the drop shapes (3.20),
(3.21) are bounded there. The variation of these points with changes in G and ¥”, the variations
of ax.—r.a. points in ¥, and of ax.-r.s. points in G, are presented last.

(a) Perturbations in ¥~ near ax.—r.s. bifurcation points

When the expansion for G is neglected in (8.2), the first-order problem becomes (3.3) with
d® = (0,7{). The homogeneous problem is the same as solved in the analysis of unperturbed
bifurcation and is singular at the ax.—r.s. bifurcation points. The non-homogeneous problem has
a bounded solution at X' = X0 if

(g, d{2(0,77{%)) = 0, (3.22)

where vl is the solution of the unperturbed problem (see table 1). Equation (3.22) has a solution
only when 7' = 0. Thus the first-order problem becomes homogeneous (d{® = 0) and its
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ROTATING DROPS: SHAPE AND STABILITY 355

solution is v{® = Aol = A(¢,c)T where 4 is an unknown amplitude. Proceeding to the second-
order problem gives the solvability criteria

(i dP(0,7°0)) = [(3—7%) F(¢°) — I ($5$) —26] A — 162 (A +2¥"{Pc = 0, (3.23)

with #(¢) = f i f % () dzd@. This equation is quadratic in 4 in terms of £{® for any value of ¥"{.
We set {9 = 1 without loss of generality. Then specifying 8 sets the value of ¥~ and setting 2'{®
gives a distance in X from the ax.—r.s. bifurcation point; see equation (3.2). For each pair § and
2, there may be either no, one or two values of 4 that satisfy (3.23).

A
A
(@) ¥"=nB (c) G=0
~
\ N
\ \
\ \
—————— S, P ——
ax.—Tr.s \/ /
bifurcation point J ax.—r.a.
7 — - bifurcation point
- - ifurcation poin
J .
(b) V" + 1B {d) G#0
~
-— \\ . . .
T~ . limit point ~< limit point
\\ \ I
) -—
P \__/ _—/ ~ -
/T ~
! 7
4 7
——— S
-
z B > o

Ficure 3. Rupturing of bifurcation points by changes in parameters: (a), (b)‘separation of ax.—r.s. bifurcation
point with change in ¥"; (¢), (d) separation of ax.-r.a. bifurcation point with change in G.

The regions of no solutions enclose the ax.-r.s. bifurcation points for any value of €, with
¢ = (2|7 —nB|)%. The ax.-r.s. points are each split locally into two distinct limit points for drops
of any volume except nB. The loci of these limit points are given by solving the condition for a
vanishing discriminant of (3.23) for X{®. This result is

p¥ONE
©) — Vs ~ons | % . .24

where y5 = 1+ 82§, and X, is defined by equation (3.17). The splitting of this bifurcation
point is sketched in figures 34, b.

23 Vol. 306. A
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(b) Perturbations in G near ax.—r.a. bifurcation points

The analysis of the cylindrical-shape family near the ax.—r.a. bifurcation points follows that
in the previous section, except the expansion for G in (3.2) is retained and the one for ¥” is
neglected. The conditions (3.7) for bounded solutions of first- and second-order problems at
2O = X, require that

GO =GP =30 =0. (3.25)

TABLE 2. COEFFICIENTS FOR THE RATE OF GHANGE OF UNBROKEN BIFURCATION POINTS
WITH GHANGES IN DROP VOLUME ¥~ OR GRAVITATIONAL BOND NUMBER G

type ax.-r.s. bifurcation point: variation in G 0 =0
. . . . e . ( 3_72
type ax.-r.a. bifurcation point: variation in ¥~ 20 = —
16nB
type n.ax.-r.a. bifurcation point: variation in G 20=0
o2
- ' . o (32— 23) sin a @, __1 cos o | —y2 20 sin &
type n.ax.-r.a. bifurcation point: variation in © _ 20
¥ (n = 1 only) 2= sin & ’
Y 32nB (cos a— )( 1)
a=vyB
Solutions of the first- and second-order problems are v{® = do® = A(¢,,0)T and 2 = A*»{®

= A%(¢,, 0)T, respectively, where 4 is again an amplitude. The solvability criteria for the third-
order problem yields a cubic equation for 4 in terms of Z{® and G{?, which is solvable for any
non-zero value of G{. Setting G{® = 1 gives

(€, d2(G39,0)) = [3(3—77) F($i ) — 65 (1) =37 (1 Pac 1) — 6 (¢2 %)
+ 97 (9% o $1)] 42— 2420.9(¢%) A - GOI (2,) = (3.26)

One, two, or three values of 4 may correspond to specified values of ¢ and 2{?. By changing G
from zero, the subcritical ax.—r.a. bifurcation pointis splitinto two shape families: one continuous
and one with a limit point. The loci of the limit point as G is varied is approximated by the
equation

20 = }[3BZR, /n2]}, (3.27)
which is determined from the condition for a vanishing discriminant and henceis a double root
of (3.23). The ruptured bifurcation diagram is shown in figure 34.

(¢) Shifting of unbroken bifurcation points

When the regular perturbations (3.20), (3.21) remain bounded, the variations of the shape
families with either G or ¥~ are smooth and the bifurcation points are unbroken. This is so for all
of the non-axisymmetric shape families, for the ax.-r.s. points when G is changed, and for the
ax.—r.a. points when #” is changed. In accordance with Reiss (1977), the variations of these shape
families are estimated by retaining the full two-variable expansion (3.2) but identifying the
scaling parameter & as either G or A¥". Several of the lowest-order problems that result have
already been solved. For example, the problem of order €°§° describes the cylindrical drop shapes;
the problems of order %" are the regular perturbations in G' (or A¥”) that have solutions (3.20),
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(3.21); the terms of order €% describe unperturbed bifurcation from the cylindrical shape
family and lead to the four sets of axisymmetric and non-axisymmetric shape families; see § 3.1.
The solutions of the problems at order ed describe how the bifurcating families evolve as & (either
G or AY") is varied. The evolution of the sets of bifurcation points is governed by the coefficients
29 for each point. These coefficients have been calculated for each unbroken bifurcation point
and are given in table 2.

4, COMPUTER-AIDED ANALYSIS

The numerical algorithm developed in I for calculating drop shapes, stability, and bifurcation
is extended to incorporate more efficient methods for continuing calculations around limit points
and for jumping from one family to another at bifurcation points. Also, an algorithm is presented
that tracks bifurcation and limit points in two parameters.

The calculations presented here are all of axisymmetric drop shapes and use the finite-element
representation of the interface in terms of a set of Hermite cubic polynomials {$¥(z)} (Strang &
Fix 1973): N
f&) = B x:9'(2) (4.1)

where the coefficients {y,} are to be determined. In most calculations finite-element bases with
either 22 or 44 dimensions were used. This finer discretization was sufficient for all calculations
reported here; further increasing the number of elements did not appreciably change the shape
of the meniscus or the location of the singular points. Substituting (4.1) into the conditions for
an extremum of the potential energy and into the volume constraint yields an N + 1-dimensional
set of algebraic equations, R(@) =0, (4.2)

for drop shape and reference pressure a® = (¥, Xs, ..., Xn> K). Equations (4.2) are solved by
Newton’s method, which starts from an initial guess a® and forms successive iterates a®

according to et = ) — J-1R (a®). (4.3)

The non-zero elements of the Jacobian matrix J are formed analytically as J;; =0R;/0«; and are
symmetric (J;; = Jj;) and banded about the main diagonal. The linear system J§%+0 = — R(a®),
%+ = b+l — g js solved by direct factorization of J.

Families of drop shapes are calculated by changing sequentially the parameters G, X, and ¥".
Continuation methods (Kubicek 1976; Brown et al. 1980) are used to calculate a first approxima-
tion & for parameter values (Gy+AG, 2,+AX, ¥, +A¥") slightly different from the set (G,,
20,7y, whe e the solution is known. The initial guess is approximated as

#O(Gy+AG, Zy+AZ, ¥ o+ DY) = a(Gyy B0, o) +06AG +a;AS +ay AV . (4.4)

The three vectors (ag, @z, ay-) are projections of the N+ 4-dimensional tangents to the surface
that describes the family of shapes into the planes corresponding to the parameters (G, 2, ¥7),
respectively; for example, a; = (0u/0X)q 5 evaluated at X' = X Each tangent vector is calcu-
lated by solving a linear equation set,

[ 72" aR/aG
Gy %)[ iy ]= —[ oR/or ] , (45)
oy OR/0Y" lg,, . v0

which is of the same form as a Newton iteration.
23-2
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The Jacobian matrix is the finite-dimensional analogue of the linearized operator & (see
equation (3.3)) and becomes singular at bifurcation and limit points. The first singularity is
easily detected by monitoring the determinant det (J) along the shape family. This determinant
will change sign at a branch point where an eigenvalue of J crosses zero, as in the case for
bifurcation with a single null vector. Second- and other even-order multiplicities of the null
vectors for J do not change the sign of det (J), but result in the same number of small pivots during
the factorization of J. The small pivots can be detected numerically, although not as accurately.

Limit points are more difficult to detect because equilibrium drop shapes, at least in the family
being calculated, do not exist beyond the sought parameter value. To circumvent this problem
we follow others (Riks 1972 ; Keller 1977) and define a new parameter s, analogous to arc-length,
that increases monotonically along a shape family. The equation set (4.2) isaugmented by adding

the constraint R
Ryio=|a|o—(s—50) =0, (4.6)

and the unknowns are supplemented with the parameter A (either 2, G, or ¥”) that is being
varied. In equation (4.6), &% = (@, a,, ..., oy, K, A) is the new vector of unknowns, s, is an
arbitrary reference for arc-length set at some point on the shape family and ||&], = max |&,],
i =1,..., N+2. The augmented equation set (4.2), (4.6) is solved by Newton’s method, and the
new Jacobian matrix is non-singular at limit points in A (Keller 1977). Limit points are located
by noting when the reciprocals of the components of the tangent vector (da/dA) pass through zero.

At a bifurcation point A* in a parameter A (either X, G, or ¥”) the Jacobian matrix evaluated
at the known drop shape a(A*) is singular and the equation set (4.5) has a homogeneous solution
(null vector) ¢, which is the tangent vector in the direction of the bifurcating shape family.
Brown & Scriven (I) constructed first approximations for Newton iterations as a(A*) +e{ for
values of A near A*. The parameter ¢ was varied until the iteration moved away from the shape
in the known family and, hopefully, converged to one in the bifurcating family. The procedure
is tedious and its success depends strongly on the distance between the two shape families. Several
methods have been proposed (Keller 1977; Rheinboldt 1978) that allow more efficient jumping
between shape families. We use a method similar to one proposed by Keller (1977) but which
gives quadratic convergence to a shape in the new family. It is built around approximating the

h b -
e #(A) = (V%) el +m(), (47)

where a(A*) is the known vector at A*, { is the null vector, u(A) is a correction vector, and ¢ is
a non-zero parameter usually taken as + 0.1. Aslong as the difference A — A* is small, the vector
a(A) given by (4.7) will have a component orthogonal to the known shape family and cannot
belong to this family. To force the solution of equations (4.2) to have the form (4.7), the equation

[(A) —a(A*)]*—e=0 (4.8)

is added to the set and Ais added to the list of unknowns. The augmented set is solved by Newton’s
method, starting with the first approximation {a(A*), A*}.

The boundaries of shape stability in terms of the four parameters (X, G, ¥", B) are determined
by the loci of singular points in this parameter space. It is prohibitively expensive to calculate
singular points by tracking shape families in each of these parameters. Instead we implement an
algorithm of Abbott (1978) for locating directly limit and bifurcation points in a parameter A.
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To do this, conditions for the occurrence of these singular points are expressed as additional
residual equations yr(a, A). Limit points are given by a vertical tangent 0a/0A,

Yo, ) = [[0a/ON] 51 = (4.90)
and bifurcation points by the vanishing determinant of the Jacobian matrix,
Y(a,A) =det(J) = 0. (4.90)

The scheme is to augment the equation set (4.2) with the appropriate condition from (4.9) and
to solve simultaneously for « and A at the singular point. Since there is no efficient way of com-
puting the sensitivity of ¢ (a, A) with respect to either « or A, the augmented equation setissolved
by a chord technique that, as shown by Abbott (1978), gives second-order convergence. Starting.
with an approximation (a®, A®), Newton’s method is used to force the drop shape toward one
satisfying the conditions for equilibrium:

09 = @ — J-1 () R(a®). (4.10)
The tangent vector in the A-direction along the equilibrium family is then estimated as
of = (00D/01) = — J1(0®) R, (0®). (4.11)

The location of the singular point in A is estimated as a root of {(a, A) by constructing the chord
between estimates for two points close to the shape family, ¥, =¥ (0@, 1) and ¥, = ¥ (0® + o,
A9 +¢), where the second point is a continuation approximation to the solution at A® +¢. The
best estimate for the vanishing of ¥ (a, A) is

AGHD = 29 —ei [ (Yra— ). (4.12)
The solution vector at A%tV is approximated by
A = ® 4 (AGHD - A®) ), (4.13)

and the steps (4.10)—(4.12) are repeated until the change in A between two iterations is less than
a specified value. The accuracy of the algorithm and the convergence criteria depend on the
value of e. For most calculations ¢ = 10~% was used; however, when a limit and bifurcation
point were extremely close, a smaller value (10—?) was necessary for convergence of the iteration.

Abbott’s method was used to track singular points in A as a second parameter § was varied.
Once the singular point in A is known for two values of 8, 8; and &,, first approximations (a®, A®)
for calculating the singular point for § = 8, are constructed by the finite-difference analogue of
the continuation method:

oty = a(a) + L= 0] -0), 200 = 2oy + [2EZI N 5,-0,). (219)

5. STABILITY AND SINGULAR POINTS

Results mentioned in §1 of the several complete studies of static menisci indicate that the
stability of a particular equilibriumshapeisrelated directly to itslocationin the tree of equilibrium
shape families and to the connectivity of each branch, as viewed from bifurcation diagrams such
as figure 1. For continuous formulations, like equations (2.1)—(2.4) for a captive drop, this con-
nection has been developed only for specific problems. However, for finite-dimensional problems,
such as the finite-element equations (4.2), connections between bifurcation and solution stability
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have been rigorously proved. The stability results summarized here all draw from considering
the finite-element version of the original continuous problem. We use results generated by two
theoretical approaches that differ by the definition of stability used and by the types of equations
to which they apply.

The most applicable theories deal with finite-dimensional equation sets that are governed by
an energy principle (Thompson & Hunt 1973; Thompson 1979), for this is the case of a static
meniscus, and predict how the eigenvalues of the problem for energy stability may change as
a parameter is varied through a singular point. The other approach (Iooss & Joseph 1980) is
designed for treating finite-dimensional evolution equations: equation sets involving first deri-
vatives with respect to time. Stability to small-amplitude disturbances that have exponential
time dependence is analysed and the problem reduces to the calculation of another set of eigen-
values. When an energy principle exists these two approaches give the same stability results,
although the energy analysis gives no indication of the decay rates for various disturbances. We
take advantage of results from both approaches.

Captive rotating drops may change stability only at singular points. Our discussion is limited
to singular points of co-dimension one, i.e. simple bifurcation and limit points, where a single
eigenvalue passes through zero; its eigenvector is the shape perturbation that causes instability.
These are the only types we found, except for very special values of the parameter sets where two
singular points coalesce.

A family of drop shapes must change stability at a limit point in either 2, G, or #” (Thompson
1977; looss & Joseph 1980). If a branch of the family is stable before the limit point, the other
branch must be unstable (see figure 15). A limit point in an already unstable family of shapes
can either make the drop become unstable or regain stability to an additional disturbance.
Examples of all three cases were found by eigenvalue calculations in the shape families of free
rotating drops (Brown & Scriven 19804). Thompson (1979) and Katz (1978) have shown that
the relative stability of both solution branches near a limit point can be calculated by comput-
ing either the energies of shapes along both branches or by calculating a conjugate parameter
that measures the rate of change of the energy with respect to introduction of a small amount
of the critical eigenfunction at the limit point. Padday & Pitt (1973) used the energy level as
the criteria for stability of axisymmetric hydrostatic menisci separating hydrostatic fluids. The
stability of the captive drop can be tracked through a succession of limit points by using these
criteria.

Stability can be exchanged between two shape families at a simple bifurcation point only in
ways dictated by the type of intersection between the families. Under the restriction of a single
eigenvalue passing through zero, Iooss & Joseph (1980) show how to reduce this problem to a
single dimension projected in the direction of the critical eigenfunction. They prove that each
shape family that passes through a simple bifurcation point must change stability unless the family
has simultaneously a limit point, as is the case for subcritical (figure 1a) or supercritical bifurca-
tion points. Iooss & Joseph also proved that shape families passing through a bifurcation point
must have alternating stability when evaluated at the same value of the parameter (X, ¥", or G).
For example, the two subcritically bifurcating branches on eitherside of the stable family in figure
1a are both unstable, according to these criteria.

The results of Iooss & Joseph are enough to classify completely the stability of branches
occurring at the bifurcation point in a shape family that is known a priori to be stable for lower
values of the parameter. Assessment of the stability of shape families at a bifurcation point is
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more difficult when no shapes are known to be stable. As for a limit point, a shape family that is
stable on one side of the branch point can change stability by becoming more stable or unstable.
Deciding which case exists amounts to determining whether the critical eigenfunction at the
bifurcation pointis the same as the one already causing instability in the shape family. Eigenvalue
calculations for shapes on each branch near the bifurcation point are needed to discriminate
between these cases. These calculations are not necessary for all values of ¥” and G, once the
stability results are known for the unperturbed (¥" = nB, G = 0) case for a range of 2. The
cylindrical, ax.-r.a. and ax.-r.s. shapefamilies each evolve with changesin ¥” and G. The stability
of shapes for the new parameter values is the same as the stability of the unperturbed case, unless
the shape family passes through either a limit or bifurcation point.

1 : |
2 -~
% s
| =~
~
XL AN -
- \
8 AY
3 . \
2 cylinders \
8 ‘\
a,
® 0‘——¥—ﬁ ----------- l——~—=
g e I
8 L) ]
= /
R3 ax—r.a. shape /
(3]
= /
2 [ / 7
/
) /
=3 ’
S ax—r.s. shape e
& \s/
S _1L - _|
£
o | L
0 5 10

rotational Bond number, X
F1GURE 4. Axisymmetric shape families computed by finite-element analysis for ¥” = nB, 2B = 1 and G = 0.

6. REsuLTs
6.1. Cylindrical drops

The unperturbed case of a drop with cylindrical volume ¥~ = nB was the starting point for
probing variations of drop shape and stability caused by changing any of the four parameters
2, G, ¥, and B. From this base, rotating bubbles (X' < 0) and drops (X > 0) were studied as a
function of drop volume ¥~ and gravitational Bond number. Finite-element calculations were
confined to G > 0; changing the sign of G amounted to flipping the captive drop and so was
redundant. Shape stability was assessed from the guidelines in § 5. ’

The cylinders and the first two axisymmetric shape families are represented on figure 4 for
2B = 1. The values of reference pressure K — K© were calculated along with drop shapes by the
finite-element algorithm. The family of cylindrical shapes lost stability at the branch point to the
family of ax.-r.a. shapes, which bifurcated subcritically and were unstable. The ax.-r.s. shape
family, predicted to bifurcate transcritically by asymptotics, appears subcritical in figure 4. A
much expanded view of the two shape families near the ax.—r.s. bifurcation point (figure 55)
shows the acute angle at the crossing, and a nearby limit point in the ax.-r.s. family. As reasoned
from the asymptotic analysis, increasing B shifted the limit point through the bifurcation point;
the two singular points were numerically coincident at 2B ~ 4.0. The neighbourhood of the
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ax.—r.s. bifurcation point for 2B = 5.5 is shown in figure 5a. The stability of the branches of
the ax.-r.s. family could not be determined from the rules in § 5, but eigenvalue calculations in
I have shown both branches to be unstable.

Drop shapes belonging to the ax.-r.a. and the two branches of the ax.-r.s. families are shown
in figure 6. The menisci became more deformed as the rotational Bond number was decreased
along each branch. When gravity was absent, reflecting the ax.-r.a. shapes about the plane z = 0
left both as equilibrium shapes, so two distinct branches actually existed, but were superimposed
on the projection in the K, Z-plane. The shapes belonging to the two branches of the ax.—r.s.
family were different as shown in figures 65, ¢.

The finite-element calculations made possible a quantitative evaluation of the range of
validity of the asymptotic results presented in §3. The slopes and curvatures of the intersections

0.01 T T T T

\ (b)

1 004k .

cylinders ax—r.s. shapes

dimensionless reference pressure, K — K©

ax.—r.s. shapes cylinders
—0.02f - ok
i 1t .
- 004 ! i 1 L i 00 4 { |
0.207 0.208 0.209 9.960 9.965 9.970

rotational Bond number, £

Ficure 5. Expanded views of the transcritical ax.—r.s. bifurcation point for
G =0and ¥ = nB; (a) 2B = 5.5 and (b) 2B = 1.

0.5
(a) (b) (c)
—X=90
N cylinder\~ 80
L
§ 2=9.5 6.0
b o 9.0 cylinder
g or 7] 807 [ 7
- — X =47 69
g 4.5
8
4.0
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—0.5
0.75 1.00 1.25 0.75 1.00 1.25 0.75 100 1.25

radial coordinate, 7

Fiure 6. Drop shapes for ¥~ = nB, G = 0 and 2B = 1. Shapes are from («) the ax.-r.a. family, () the upper
branch of the ax.~r.s. family and (¢) the lower branch of the ax.-r.s. family.
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of the r.a. and r.s. bifurcating families with the cylindrical families are given in table 3 for both
asymptotic and numerical calculations. Over a small range of X both agreed well. As expected,
the range of validity of the results about the ax.—r.s. family was constricted by the nearby limit
point.
6.2. Changes in drop volume

Decreasing the volume of the drop caused the cylindrical shapes to draw inward at their
waists. These new shapes are reflectively symmetric about z = 0 and so have the same symmetry
as the shapes in the ax.-r.s. family. The projection of the axisymmetric shape families into the
K, Z-plane is shown in figure 7 for ¥~ = 0.75nB and 2B = 1.0. For small changes in ¥”, the
bifurcation point between what were the cylindrical and ax.-r.s. shape families was ruptured and
a limit point was created. The bifurcation between the ax.-r.a. and cylindrical shape families

TABLE 3. COMPARISON OF COEFFICIENTS PREDICTED BY ASYMPTOTIC ANALYSIS

AND FINITE-ELEMENT CALCULATIONS .
range of validity

bifurcation point asymptotic numerical in terms of
p A N quantity result results parameter
ax.-r.a. unperturbed ZO®/K® 17.0 15.7 AZ < 1
ax.—r.s. unperturbed /KW —0.126 —-0.125 AZ < 10™4
ax.-r.a. perturbed in ¥~ z{v —1.45 —1.45 AY < 102
ax.-r.a. perturbed in G zo —0.57 —0.55 AG < 1
ax.-r.s. perturbed in ¥~ zo —1.79 (2B = 1.0) <—2.5 AV < 10-8

—0.030 (2B = 5.5) —0.024 AV < 104
ax.-T.S. perturbed in G zo 0 _— —
nax.-rs.  perturbed in ¥~ zo —0.89 —-0.95 AV < 1073
n.ax.-r.a.  perturbed in G zo 0 — —
6 1

>
T
~,
]

[ 3
T

deformed cylindrical .
shapes

dimensionless reference pressure, K — K@

0 5 10
rotational Bond number, X
FiGure 7. Axisymmetric shape families computed for ¥~ = 0.75nB, 2B = 1, and G = 0. The rupturing of the
main shape family at the ax.-r.s. bifurcation point, and the disconnected shape families are shown. Unstable
drop shapes are given as dashed lines (- - -). The Z-values (Z) correspond to drop shapes shown in figure 8.
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still occurred at a value of 2'lower than for the new limit point. Meniscus shapes along the two
distinct families for ¥” = 0.75nB are given in figure 8; the symmetries of the shapes in the un-
perturbed families (¥~ = nB) remained, but were superimposed on the deformed drop shapes.
Decreasing the drop volume further moved the limit point to a lower value of 2’ and moved it
closer to the ax.—r.a. bifurcation point. On the bifurcation diagram for ¥” = 0.5tBand 2B = 1.0
(figure 9), the order of the bifurcation and limit points was reversed and the drop first lost
stability (and local equilibrium) at the limit point. The loci of the ax.—r.a. bifurcation points and
the limit points have been calculated by the scheme explained in § 4 and are shown in figures 10
and 11 for 2B = 1.0 and 2B = 5.5, respectively. In both cases, the limit point created from the

0.5
(a) (b)
N r=X,=451 r=5=35
g Te=4.1
S
g X, =4.37
o
3  OfF x,=400 4 | _
]
S X, =200
»
«
=42
—0.5
0.5 1.0 15 05 1.0 15

radial coordinate, »

Ficure 8. Sample drop shapes for ¥~ = 0.75nB, 2B = 1, and G = 0: (a) shapes in families of
deformed cylinders; (b) shapes in ax.—r.a. family.

3 T T T T
T I T T
10~ \ n
2+ — I
N ax.—r.s. Iy
g limit points i\
ax.—r.a. shapes 'g
3
1F n &
E
S 5 ]
A
’§
0 deformed cylindrical | g /
shapes s /\
8
ax.—r.s.
bifurcation points
-1 1 | ! | 1 | ! |
0 1 2 0 1 2
rotational Bond number, & dimensionless drop-volume, ¥”/nB
Ficure 9. Axisymmetric shape families computed Ficure 10. Variation of the values of rotational
for ¥~ = 0.5xB, 2B = 1, and G = 0. Unstable Bond number for ax.-r.a. bifurcation and ax.-r.s.
drop shapes are given as dashed curves (- - -). limit points with drop volume for 2B = 1.0 and

G = 0. Solid curves indicate the mode responsible
for loss of stability of the drop.
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ax.—r.s. families decreased rapidly as ¥~ changed from nB compared with changes in the value
of X for the ax.-r.a. bifurcation point. This behaviour is expected because of the quadratic
dependence of #” on X near that limit point which was predicted by the asymptotic results.

The loci of the bifurcation and limit points were coincident for a drop of dimensionless volume
" = 0.6 B. This result was not accurately predicted by the analysis of § 3. The curve of ax.—r.a.
bifurcation points had a maximum in X for a drop with slightly less volume than a cylinder. This
made the asymptotic behaviour of the curve near ¥~ = nB unrepresentative of that at small
values of 7. Projected in the #”, Z-plane of figure 10, the intersection point of the two families of
singular points appeared numerically as a cusp point (Iooss & Joseph 1980); the two curves
intersected but did not cross. For dimensionless volumes less than ¥” = 0.67.B, the limit point
appeared first in the stable shape family. The mode of instability had shifted from an ax.-r.a.
shape instability associated with the subcritical bifurcation to a reflectively symmetric pertur-
bation caused by the limit point; see figures 7 and 9.

TaBLE 4. COORDINATES (B, ¥”, G) FOR THE COINCIDENCE OF THE AX.—R.A.
BIFURCATION POINT AND THE AX.—R.S. LIMIT POINT

drop length, dimensionless rotational
2B volume, ¥"/nB Bond number, X
1.0 0.60 3.20
1.4 0.54 1.75
2.0 0.53 0.88
3.0 0.55 0.26
4.0 0.58 0.03
5.5 0.60 ~0.15

Increasing the drop volume decreased the rotational Bond numbers for the bifurcation and
limit points and brought them close together. They were not coincident up to the largest drop
volume that could be accommodated in the cylindrical representation used here. Increasing the
length of the drop to 2B = 5.5 (figure 11) did not change the structure of the bifurcation and
limit point curves, but shifted them to lower values of 2. The cusp point between the curves
occurred at 2' = — 0.15 corresponding to a rotating bubble. Again, the asymptotic analysis gave
a poor prediction of the cusp point; this was clearly seen by drawing tangents to both curves on
figure 11 at ¥~ = nB.

The variation of the point for the exchange of instability mode with drop length is shown in
table 4. The rotational Bond number X decreased monotonically with increasing B. The drop
volume for the switch in the mode of instability passed through a shallow minimum near
B =1.0.

Gillette & Dyson (1971) haveshown thatnon-rotating captive drops which areneutrally buoyant
(G = 0) and of fixed volume may be unstable. They established upper and lower bounds on the
drop volume for a range of values of drop length. We have used the algorithm for tracking
singular points to trace out the neutral stability curve in the B, ¥ "-plane that corresponds to the
low bound of Gillette & Dyson; this result is shown in figure 12. The upper bounds on drop
volume all correspond to drop shapes that bulge from the discs and cannot be represented as
S =f(z,0). The well known Rayleigh (1879) limit is the neutrally stable cylindrical (¥~ = nB)
drop with 2B = 2r. Non-rotating drops with 2B < 4.1 lost stability to an ax.-r.a. perturbation,
whereas drops of greater length lost equilibrium at the limit point caused by the rupturing of the
first ax.-r.s. shape family. This crossing point is seen by examining table 4.
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The asymptotic and numerical predictions for the slopes d2'/d¥” at the cylindrical family
are given in table 3 for the intersections of the first ax.-r.a., ax.-r.s., and non-axisymmetric
shape families. The numerical results for the non-axisymmetric shape family were taken from
data presented in I. The bifurcation points to the non-axisymmetric and ax.-r.a. families are
not ruptured by changes in %", and the asymptotic results had comparable ranges of validity
in both cases. The limit point in the ax.—r.s. family again caused the asymptotic results to be
inaccurate. Even for changes in volume of 105, asymptotic and finite-element results agreed only
to within 50 9, for 2B = 1.0. This accuracy was improved slightly at 2B = 5.5, where the limit

< point is farther from the bifurcation point in the unperturbed (cylindrical) case; see figure 5.
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Ficure 11. Variation of the values of rotational Fioure 12. Neutral stability curve for non-rotating
Bond number with drop volume for ax.-r.a. (& = 0), neutrally buoyant captive drops (G = 0).
bifurcation and ax.-r.s. limit points, for 2B = 5.5 Dashed (- - -) curve indicates change in the mode
and G = 0. Solid curves indicate the mode re- of instability.

sponsible for loss of stability of the drop.

6.3. Changes in gravitational Bond number

Increasing G from zero caused shapes in the cylindrical family to sag toward the plane z = 0.

o

< - Drop shapes for 2 = 0, G = 10, B = 1, and a range of drop volumes are shown in figure 13. Note
S —~ that shapes for drops with volume very much greater than the cylinder (e.g. ¥~ = 2nB) cannot
M= be represented adequately in cylindrical coordinates. These shapes appear to be resting on an
s G imaginary surface when they should sag below the plane perpendicular to the axis at z = — B.
O We limited our calculations to drops with almost cylindrical volume or to long drops (2B > 1)
=w where the representation was valid for a wider range of #”. For non-zero G, the ax.-r.a. shape

family was ruptured and a limit point was formed where the drop lost stability. The limit point
moved rapidly to smaller values of 2’ with increasing G. As shown in table 3, the asymptotic
results accurately predicted the rate of decrease of 2'with G for gravitational Bond numbers up to

_ unity. The ax.~r.s. bifurcation point was not broken by changesin G, as predicted by asymptotics.
To first order, this bifurcation point was stationary for changes in G. No attempt was made at
numerically estimating the curvature of this family in the X, G-plane.
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The limit of stability of a drop of length 2B = 5.5 is given in figure 14 for ¥~ = nB. Again all
drops lost stability to an ax.—r.a. perturbation at the limit point. For G = 0.028, the static drop
(& = 0) lost stability. The loci of this hydrostatic instability is shown on figure 15 as a function of
drop length. The points shown on this figure were taken from Coriell et al. (1977) and agree well
with our calculations. The effect of drop volume on the hydrostatic limit is demonstrated on
figure 16 for 2B = 5.5. As the volume was decreased, the critical value of G also decreased until,
at ¥ & 0.797B, the drop volume became unstable without gravity. This point corresponded to
the lower limit of Gillette & Dyson; see figure 12. At large drop volumes the locus of instability
in the ¥7, G-plane must have a maximum and pass through Gillette & Dyson’s upper bound on

0 . |
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11w B
1.3nB
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1.2 14 1.0

radial coordinate, r

Ficure 13. Sample shapes of non-rotating (£ = 0)
drops with G = 10, 2B = 1, and drop volumes

between nB and 2nB.

Rayleigh
limit

drop length, 2B

Ficure 15. Neutral stability curve for non-rotating
(£ = 0) drops with " = nB. Points are from

Coriell et al. (1977).
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Ficure 14. Effect of gravitational Bond number of

ax.-r.a. limit point for ¥~ = nB and 2B = 5.5.
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drop volume for stability at G = 0. Unfortunately, the cylindrical shape representation failed
long before either point was reached. Boucher & Evans (1980) also studied the stability of captive
drops in the ¥7, G-plane and our results agree as closely as can be estimated from their plots.

7. CONCLUDING REMARKS

A complete picture of the shape and stability of captive rotating drops must include the non-
axisymmetric equilibria which are neglected in § 6. Non-axisymmetric shapes bifurcate first
from the cylindrical family as long as the drop length satisfies the criteria 2B < m4/3; this is the
case for our calculations with 2B = 1. Finite-element calculations reported in I have shown that
the n = 1 non-axisymmetric bifurcation point still governs drop instability when the drop volume
is perturbed from the cylinder. The exact range of ¥~ depended on the drop length; for drops
significantly larger or smaller than a cylinder, the rotational Bond number for bifurcation to the
n.ax.-r.s. family decreased from its value for ¥~ = nB. For even larger and smaller drops the
mode for instability must change from the non-axisymmetric one to an axisymmetric shape
because axisymmetric perturbations are most dangerous to the stability of hydrostatic (£ = 0)
menisci that are axisymmetric (Coriell et al. 1977). Comparing figure 10 in I with figure 10 here
shows that the mode has not changed for drop volumes between 0.57B < ¥” < 1.6nB when
2B = 1; however, this change is shown for 2B = 2 in figure 11 in I.

Drops with length 2B = 5.5( > m4/3) are first unstable to an axisymmetric mode and so results
presented here give the entire picture of equilibrium shape and stability. Stable and unstable
equilibrium forms are separated by a surface drawn in the coordinate space (£, ¥”, G) that has
projections onto the coordinate axis given by figures 11, 14 and 16. The surface is convex around
the non-rotating cylindrical shape (0, 7B, 0), and all drops on this side of the surface are stable.
The shape perturbations that populate the surface and cause instability are associated with either
limit or bifurcation points, depending on the values of 2, #”, and G. Understanding the evolution,
in terms of parameters of both stable and unstable shape families, is necessary tc explain the
behaviour of any nonlinear iterative scheme for calculating equilibrium shapes. Coriell et al.
(1977) used a shooting technique to calculate axisymmetric shapes ol rotating captive drops with
gravity. They reported that in some cases the iterations converged to static shapes that either
bulged at the top (with respect to gravity) or satisfied df/dz = 0 at more than two values of z,
instead of the more expected shapes like those in figure 13. The multiple-equilibrium shapes of
Coriell ¢t al. are members of the different ax.~r.a. and ax.-r.s. shape families described here.
Their shooting algorithm jumped between equilibria in different shape families because of
changes in the initial guess supplied to the algorithm. Methods are available (Keller 1969) for
studying bifurcation points in two-point boundary value problems that are solved by initial-
value methods like those of Coriell ef al. and have been applied to simple two-dimensional
meniscus problems (Brown 1979).

Neither changes in drop volume nor changes in gravitational Bond number cause imper-
fections in the bifurcation points between the cylindrical and the non-axisymmetric shape
families. In principle, all bifurcation points are structurally unstable (Thompson & Hunt 1975)
and are ruptured by some change in the parameters of the system. The solvability criteria (3.7)
show the development of an imperfection to be related directly to the symmetry relation between
the changes in drop shape caused by varying a particular parameter and the eigenfunction that
describes the unperturbed bifurcating shapes. More exactly, these two functions must have the
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same symmetry for an imperfection to develop. This is the case for changes in drop volume and
the ax.-r.s. shapes, as well as for changes in G' and the ax.-r.a. shapes. The bifurcations to the
non-axisymmetric shape families are only broken by introducing azimuthal asymmetries into the
ideal system. The most likely source is the misalignment of the two discs, which would cause the
drop to bulge in one direction and break the first non-axisymmetric bifurcation point. The
bifurcation points to non-axisymmetric shapes can also be broken intentionally by shaping the
discs in the form of the preferred multi-lobed drop, i.e. f(— B,0) = f(B,0) = 1+dcos (n0),
where d is a constant. Whether or not the new limit point will represent the limit of shape
stability will depend on the parameters (¥”, G, 2) and on the deformation of the discs as measured
by d.

Imperfections that break symmetry and rupture bifurcation points can be identified in other
capillary problems. For example, the mechanism for rupturing a charged spherical drop
(Rayleigh 1882) changes from a subcritical bifurcation to a family of two-lobed drop shapes to a
limit point in a family of the same symmetry (Taylor 1966) when an external electric field is
introduced. Michael ef al. (1974, 1975) also observed the breaking of a bifurcation point into a
limit point in the families of shapes of a layer of insulating liquid separating conducting fluids at
different electrostatic potentials. Also, the bifurcation points to non-axisymmetric shape families
where axisymmetric sessile and certain pendent drops lose stability (see Michael 1981) are both
ruptured by inclining the drop so that it is no longer axisymmetric (Lawal & Brown 19824, b).

Imperfections that rupture bifurcations are particularly important because the singular nature
of the imperfection implies a very rapid change in the critical point for small changes in the
imperfection parameter. This gives the typical cusp shape on plots of the critical point against
the parameter seen in figures 10 and 11. Asymptotic analysis, like that presented in § 3.2 usefully
characterizes the sensitivity of bifurcation points to imperfections caused by introducing other
parameters, however, it does not always give accurate estimates of the variation of the critical
point over ranges of the parameter large enough to infer the interaction of that critical point
with others. The limited ranges of validity of the asymptotic results are clearly seen in the
results of §§ 6.2 and 6.3. Numerical calculation by techniques specifically for tracking limit and
bifurcation points must be used to study a wide range of parameters.
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National Science Foundation through a fellowship to L.H.U. The authors are grateful to O. A.
Basaran and R. E. Benner for independently calculating equations (3.3), (3.4) and to A. Lawal
for valuable discussions on numerical methods.
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